Out-of-Distribution (OOD) detection, i.e., identifying whether an input is sampled from a novel distribution other than the training distribution, is a critical task for safely deploying machine learning systems in the open world. Recently, post hoc detection utilizing pre-trained models has shown promising performance and can be scaled to large-scale problems. This advance raises a natural question: Can we leverage the diversity of multiple pre-trained models to improve the performance of post hoc detection methods? In this work, we propose a detection enhancement method by ensembling multiple detection decisions derived from a zoo of pre-trained models. Our approach uses the p-value instead of the commonly used hard threshold and leverages a fundamental framework of multiple hypothesis testing to control the true positive rate of In-Distribution (ID) data. We focus on the usage of model zoos and provide systematic empirical comparisons with current state-of-the-art methods on various OOD detection benchmarks. The proposed ensemble scheme shows consistent improvement compared to single-model detectors and significantly outperforms the current competitive methods. Our method substantially improves the relative performance by 65.40% and 26.96% on the CIFAR10 and ImageNet benchmarks.
translated by 谷歌翻译
深度神经网络易于对自然投入的离前事实制作,小而难以察觉的变化影响。对这些实例的最有效的防御机制是对逆脉训练在训练期间通过迭代最大化的损失来构建对抗性实例。然后训练该模型以最小化这些构建的实施例的损失。此最小最大优化需要更多数据,更大的容量模型和额外的计算资源。它还降低了模型的标准泛化性能。我们可以更有效地实现鲁棒性吗?在这项工作中,我们从知识转移的角度探讨了这个问题。首先,我们理论上展示了在混合增强的帮助下将鲁棒性从对接地训练的教师模型到学生模型的可转换性。其次,我们提出了一种新颖的鲁棒性转移方法,称为基于混合的激活信道图(MixacM)转移。 MixacM通过匹配未在没有昂贵的对抗扰动的匹配生成的激活频道地图将强大的教师转移到学生的鲁棒性。最后,对多个数据集的广泛实验和不同的学习情景显示我们的方法可以转移鲁棒性,同时还改善自然图像的概括。
translated by 谷歌翻译
向外配送(OOD)数据的概括是现代机器学习中的核心问题之一。最近,试图提出主要建立在提取不变特征的想法上的算法。虽然直观地合理,但理论上了解如何保证ood泛化仍然有限,并且任意分配的概括显然是不可能的。在这项工作中,我们将第一步迈向严格和定量定义1)什么是ood; 2)通过说ood问题是学习的,这是什么意思。我们还介绍了扩展功能的新概念,其特征在于训练域的测试域中的方差在多大程度上放大,因此提供了不变特征的定量含义。基于这些,我们证明了ood泛化误差界限。事实证明,OOD泛化在很大程度上取决于扩展功能。正如Gulrajani和Lopez-PAZ(2020)所指出的那样,任何没有模型选择模块的学习算法都是不完整的。我们的理论自然地诱导了模型选择标准。基准OOD数据集的广泛实验表明,我们的模型选择标准在基线上具有显着的优势。
translated by 谷歌翻译
Driven by improved architectures and better representation learning frameworks, the field of visual recognition has enjoyed rapid modernization and performance boost in the early 2020s. For example, modern ConvNets, represented by ConvNeXt, have demonstrated strong performance in various scenarios. While these models were originally designed for supervised learning with ImageNet labels, they can also potentially benefit from self-supervised learning techniques such as masked autoencoders (MAE). However, we found that simply combining these two approaches leads to subpar performance. In this paper, we propose a fully convolutional masked autoencoder framework and a new Global Response Normalization (GRN) layer that can be added to the ConvNeXt architecture to enhance inter-channel feature competition. This co-design of self-supervised learning techniques and architectural improvement results in a new model family called ConvNeXt V2, which significantly improves the performance of pure ConvNets on various recognition benchmarks, including ImageNet classification, COCO detection, and ADE20K segmentation. We also provide pre-trained ConvNeXt V2 models of various sizes, ranging from an efficient 3.7M-parameter Atto model with 76.7% top-1 accuracy on ImageNet, to a 650M Huge model that achieves a state-of-the-art 88.9% accuracy using only public training data.
translated by 谷歌翻译
A step-search sequential quadratic programming method is proposed for solving nonlinear equality constrained stochastic optimization problems. It is assumed that constraint function values and derivatives are available, but only stochastic approximations of the objective function and its associated derivatives can be computed via inexact probabilistic zeroth- and first-order oracles. Under reasonable assumptions, a high-probability bound on the iteration complexity of the algorithm to approximate first-order stationarity is derived. Numerical results on standard nonlinear optimization test problems illustrate the advantages and limitations of our proposed method.
translated by 谷歌翻译
Masked image modeling (MIM) has shown great promise for self-supervised learning (SSL) yet been criticized for learning inefficiency. We believe the insufficient utilization of training signals should be responsible. To alleviate this issue, we introduce a conceptually simple yet learning-efficient MIM training scheme, termed Disjoint Masking with Joint Distillation (DMJD). For disjoint masking (DM), we sequentially sample multiple masked views per image in a mini-batch with the disjoint regulation to raise the usage of tokens for reconstruction in each image while keeping the masking rate of each view. For joint distillation (JD), we adopt a dual branch architecture to respectively predict invisible (masked) and visible (unmasked) tokens with superior learning targets. Rooting in orthogonal perspectives for training efficiency improvement, DM and JD cooperatively accelerate the training convergence yet not sacrificing the model generalization ability. Concretely, DM can train ViT with half of the effective training epochs (3.7 times less time-consuming) to report competitive performance. With JD, our DMJD clearly improves the linear probing classification accuracy over ConvMAE by 5.8%. On fine-grained downstream tasks like semantic segmentation, object detection, etc., our DMJD also presents superior generalization compared with state-of-the-art SSL methods. The code and model will be made public at https://github.com/mx-mark/DMJD.
translated by 谷歌翻译
Considering the computation complexity, we propose a Guided Hybrid Quantization with One-to-one Self-Teaching (GHOST}) framework. More concretely, we first design a structure called guided quantization self-distillation (GQSD), which is an innovative idea for realizing lightweight through the synergy of quantization and distillation. The training process of the quantization model is guided by its full-precision model, which is time-saving and cost-saving without preparing a huge pre-trained model in advance. Second, we put forward a hybrid quantization (HQ) module to obtain the optimal bit width automatically under a constrained condition where a threshold for distribution distance between the center and samples is applied in the weight value search space. Third, in order to improve information transformation, we propose a one-to-one self-teaching (OST) module to give the student network a ability of self-judgment. A switch control machine (SCM) builds a bridge between the student network and teacher network in the same location to help the teacher to reduce wrong guidance and impart vital knowledge to the student. This distillation method allows a model to learn from itself and gain substantial improvement without any additional supervision. Extensive experiments on a multimodal dataset (VEDAI) and single-modality datasets (DOTA, NWPU, and DIOR) show that object detection based on GHOST outperforms the existing detectors. The tiny parameters (<9.7 MB) and Bit-Operations (BOPs) (<2158 G) compared with any remote sensing-based, lightweight or distillation-based algorithms demonstrate the superiority in the lightweight design domain. Our code and model will be released at https://github.com/icey-zhang/GHOST.
translated by 谷歌翻译
Automatic font generation without human experts is a practical and significant problem, especially for some languages that consist of a large number of characters. Existing methods for font generation are often in supervised learning. They require a large number of paired data, which are labor-intensive and expensive to collect. In contrast, common unsupervised image-to-image translation methods are not applicable to font generation, as they often define style as the set of textures and colors. In this work, we propose a robust deformable generative network for unsupervised font generation (abbreviated as DGFont++). We introduce a feature deformation skip connection (FDSC) to learn local patterns and geometric transformations between fonts. The FDSC predicts pairs of displacement maps and employs the predicted maps to apply deformable convolution to the low-level content feature maps. The outputs of FDSC are fed into a mixer to generate final results. Moreover, we introduce contrastive self-supervised learning to learn a robust style representation for fonts by understanding the similarity and dissimilarities of fonts. To distinguish different styles, we train our model with a multi-task discriminator, which ensures that each style can be discriminated independently. In addition to adversarial loss, another two reconstruction losses are adopted to constrain the domain-invariant characteristics between generated images and content images. Taking advantage of FDSC and the adopted loss functions, our model is able to maintain spatial information and generates high-quality character images in an unsupervised manner. Experiments demonstrate that our model is able to generate character images of higher quality than state-of-the-art methods.
translated by 谷歌翻译
Gaze estimation is the fundamental basis for many visual tasks. Yet, the high cost of acquiring gaze datasets with 3D annotations hinders the optimization and application of gaze estimation models. In this work, we propose a novel Head-Eye redirection parametric model based on Neural Radiance Field, which allows dense gaze data generation with view consistency and accurate gaze direction. Moreover, our head-eye redirection parametric model can decouple the face and eyes for separate neural rendering, so it can achieve the purpose of separately controlling the attributes of the face, identity, illumination, and eye gaze direction. Thus diverse 3D-aware gaze datasets could be obtained by manipulating the latent code belonging to different face attributions in an unsupervised manner. Extensive experiments on several benchmarks demonstrate the effectiveness of our method in domain generalization and domain adaptation for gaze estimation tasks.
translated by 谷歌翻译
Diabetic Retinopathy (DR) is a leading cause of vision loss in the world, and early DR detection is necessary to prevent vision loss and support an appropriate treatment. In this work, we leverage interactive machine learning and introduce a joint learning framework, termed DRG-Net, to effectively learn both disease grading and multi-lesion segmentation. Our DRG-Net consists of two modules: (i) DRG-AI-System to classify DR Grading, localize lesion areas, and provide visual explanations; (ii) DRG-Expert-Interaction to receive feedback from user-expert and improve the DRG-AI-System. To deal with sparse data, we utilize transfer learning mechanisms to extract invariant feature representations by using Wasserstein distance and adversarial learning-based entropy minimization. Besides, we propose a novel attention strategy at both low- and high-level features to automatically select the most significant lesion information and provide explainable properties. In terms of human interaction, we further develop DRG-Net as a tool that enables expert users to correct the system's predictions, which may then be used to update the system as a whole. Moreover, thanks to the attention mechanism and loss functions constraint between lesion features and classification features, our approach can be robust given a certain level of noise in the feedback of users. We have benchmarked DRG-Net on the two largest DR datasets, i.e., IDRID and FGADR, and compared it to various state-of-the-art deep learning networks. In addition to outperforming other SOTA approaches, DRG-Net is effectively updated using user feedback, even in a weakly-supervised manner.
translated by 谷歌翻译